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Abstract— Accurate and interpretable assessment of socioeconomic conditions is vital for equitable policy-

making, yet traditional methods face limitations in scalability and resolution. This paper presents a novel 

explainable multimodal framework that synergizes high-resolution satellite imagery with large language models 

(LLMs) to infer infrastructure- driven development levels. Unlike opaque deep learning models, our approach 

extracts visual features (e.g., roof materials, road density) and leverages LLMs to generate human-understandable 

insights, bridging the gap between geospatial data and actionable policy recommendations. We propose a hybrid 

architecture that aligns visual and textual modalities, enabling transparent analysis of underdeveloped regions. 

Experiments on diverse urban datasets demonstrate superior performance in identifying informal settlements and 

infrastructure gaps. By integrating explainability with remote sensing, this work advances responsible AI for social 

impact, offering governments and NGOs a scalable tool for targeted interventions. 
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I.  INTRODUCTION 

Socioeconomic inequality and infrastructure disparity are persistent challenges in many regions, particularly 

within rapidly urbanizing areas of the Global South. Accurately identifying underdeveloped zones is crucial for 

effective urban planning, equitable policy-making, and targeted resource allocation. However, conventional 

approaches to socioeconomic assessment—such as census surveys, household interviews, and administrative 

reporting—are often limited by high operational costs, coarse spatial resolution, infrequent updates, and data 

accessibility constraints. These limitations hinder timely and localized decision-making, which is vital for dynamic 

and growing urban environments.[1] 

Recent advances in remote sensing (RS) and artificial intelligence (AI) have created new opportunities to perform 

large-scale assessments of infrastructure and development patterns using satellite imagery. Satellite-derived 

features such as roof typologies, building densities, road networks, and land- use distributions offer valuable 

indirect indicators of socioeconomic status.[1] Yet, many existing machine learning applications in RS are black-

box models, lacking transparency and interpretability—two essential qualities for socially impactful and 

trustworthy AI systems.[2] To address these challenges, this paper proposes an Explainable Multimodal Approach 

for Infrastructure-Driven Socioeconomic Assessment, which leverages high-resolution satellite imagery in 
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combination with large language models (LLMs). This approach aims to provide interpretable, data-driven 

insights into infrastructure quality and spatial development conditions that can be used as proxies for 

socioeconomic status.[5][6] By integrating visual feature extraction with natural language reasoning, the model 

produces human-understandable explanations, facilitating trust, accountability, and informed action by 

government agencies, NGOs, and urban planners. 

Unlike traditional classification or segmentation models that focus purely on prediction, our framework prioritizes 

explainability and human-aligned interpretation. The method enables analysts to understand why certain urban 

regions are identified as underdeveloped by linking infrastructure patterns— such as irregular roof types or 

sparse construction grids—to likely socioeconomic indicators via LLM-generated narratives. This multimodal 

fusion architecture unites spatial visual features with semantic reasoning, offering a novel perspective on urban 

analysis 

The primary contributions of this work are: 

Proposing a multimodal hybrid architecture that integrates spatial features from high-resolution satellite imagery 

with the reasoning and interpretability capabilities of using LLMs effectively; 

 Enabling human-readable explanations of infrastructure conditions to enhance the transparency of 

development assessments; 

 Demonstrating the effectiveness of the approach on real-world urban datasets for identifying areas with 

insufficient or informal infrastructure; 

 Bridging explainable AI and remote sensing, offering a scalable and socially responsible framework for 

infrastructure-aware socioeconomic evaluation. 

This research advances the application of explainable multimodal AI in the field of urban analytics and remote 

sensing. By shifting focus from purely predictive outputs to interpretable insights, it facilitates data-informed 

governance and inclusive development planning. 

II.  ALGORITHM USED 

This study introduces a modular, end-to-end framework that integrates geospatial image, prompt engineering, 

large language models (LLMs), and structured semantic parsing to produce explainable, multimodal 

socioeconomic assessments derived from satellite-inferred urban morphology. The proposed pipeline comprises 

seven interconnected components: [7] (a) geospatial prompt engineering, 

(b) Google Gemini 2.5 Pro LLM, (c) semantic parsing and data normalization, (d) socioeconomic classification and 

typology extraction, (e) multivariate visualization and spatial diagnostics, (f) equity quantification using entropy 

and inequality metrics, and (g) explainability and observability mechanisms. 

a.  Geospatial Prompt Engineering 

To ensure accurate, context-sensitive, and policy- relevant urban analysis, the framework integrates a carefully 

structured prompt engineering strategy that encodes role orientation, task-specific instructions, and output 
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formatting guidance. This enhances the alignment between the LLM's generative capabilities and the analytical 

demands of geospatial classification. 

 Role Specification: Prompts are designed to explicitly assign the LLM a domain-relevant role (here advanced 

geospatial analysis AI trained on extensive datasets), thereby calibrating the model’s response to adopt 

appropriate tone, terminology, and analytical depth consistent with expert-level discourse. This sets the 

perspective or role from which the model should generate the content, ensuring the tone and depth of 

information are appropriate for an expert in the field.[13] 

 Instruction: Each prompt embeds explicit task directives that guide the model to simulate satellite-based 

urban analysis, classify housing typologies, and output interpretable insights grounded in morphological and 

infrastructural evidence. This shifts the LLM’s behaviour from generic text generation to structured spatial 

reasoning. 

 Output Format Design: Prompt templates enforce a strict response schema—typically JSON-based—

facilitating seamless integration with downstream geospatial analytics modules. This includes predefined field 

structures for attributes such as Housing Type, Access Score, Proximity Score, and Density Class, ensuring both 

syntactic consistency and semantic interpretability. This outlines how the content should be structured, 

guiding the model to organize the report.[13] 

b.  Google Gemini 2.5 Pro LLM 

The proposed framework leverages the Google Gemini 2.5 Pro large language model (LLM) for semantic 

enrichment and typological classification of urban structures derived from satellite imagery. 

Model Access and Security 

Access to the Gemini 2.5 Pro model is facilitated via the google-cloud-aiplatform SDK, ensuring secure and 

authenticated interaction through service account credentials. This setup supports seamless invocation of the 

model from within cloud-hosted geospatial pipelines. 

Inference Process 

Structured natural language prompts, tailored to geospatial semantics, are submitted to the LLM. The model 

returns JSON-formatted outputs that include typological classifications and associated urban indicators. These 

outputs are automatically parsed and mapped onto spatial grids or parcel polygons for visualization and analysis. 

Prompting Paradigm 

A zero-shot prompting strategy is employed, enabling immediate semantic inference without the need for prior 

examples or training data. This paradigm significantly reduces operational overhead and supports generalization 

across urban regions. The structured prompt design ensures consistent LLM outputs, even in diverse 

morphological contexts. 

Output Schema 

The LLM response includes a rich set of urban descriptors for each spatial unit, structured as follows: 
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 Housing Typology (e.g., upper-middle- income housing, informal settlement, vacant plot) 

 Construction Count and Building Density (per square kilometre) 

 Average Rooftop Area (in square meters) 

 Ordinal Infrastructure Access Level (scaled from 0 to 3) 

 Proximity to Economic Centres (in kilometres) 

Land Use Characteristics, including: 

 Functional zoning hints (residential, commercial, mixed-use) 

 Presence or absence of green spaces 

 Urbanization Index, inferred based on roof geometry, spacing, and vegetation density 

This enriched attribute set forms the foundation for typology clustering, SESI computation, and spatial inequality 

analysis. 

c.  Semantic Parsing and Data Normalization 

 Validation: JSON outputs are validated using Python's Json module to ensure structural integrity. 

 Structuring: Data is transformed into a tabular format using pandas Data Frames for streamlined analysis. 

 Normalization: Field names are standardized for clarity (e.g., access_to_basic_infrastructure becomes 

Infrastructure Access). Numeric values such as rooftop area and density are typecast and normalized to 

ensure compatibility with visualization and modelling pipelines. 

d.  Socioeconomic Classification and Typology Extraction 

Typology Classes: Built environments are classified into five distinct categories [3]: 

1. High-Income / Formal Commercial 

2. Upper-Middle-Income Housing 

3. Middle-Income Housing 

4. Low-Income / Informal Settlements 

5. Under Construction / Vacant Land 

Extracted Attributes: 

 Count and proportional share 

 Average rooftop area 

 Building density (per square kilometre) 

 Infrastructure access level (e.g., High, Good, Limited, Varies) 

 Proximity to economic centres 

e. Multivariate Visualization and Spatial Diagnostics 

 Tabular Representation: A styled summary table highlights housing type distributions, with gradient-based 

emphasis on percentage share and density. 

http://www.mijrd.com/


 
Volume: 04 / Issue: 06 / 2025 - Open Access - Website: www.mijrd.com - ISSN: 2583-0406 

 

 

Multidisciplinary International 

Journal of Research and Development 

103 All rights are reserved by www.mijrd.com 

Visualizations: 

 Pie Chart: Visualizes proportional distribution of housing typologies 

 Bar Chart: Compares density across housing types 

 Area Chart: Illustrates normalized construction intensity 

 Scatter Plot: Plots building density against economic centre proximity, using rooftop area as the marker size 

 Radar Chart: Profiles each housing type using normalized values for infrastructure access, density, and 

proximity 

f.   Equity Quantification and Urban Fairness Metrics 

Socioeconomic Spread Index (SESI): 

The Socioeconomic Spread Index (SESI) is computed using normalized Shannon entropy to quantify the diversity 

and spatial dispersion of housing typologies. In this iteration, the SESI score of 0.7413 reflects a moderate level of 

categorical heterogeneity, indicating that while multiple housing types coexist within the study area, their 

distribution exhibits spatial asymmetry. This pattern is consistent with morphologies shaped by market-driven 

zoning, socio-political   exclusions,   and   uneven infrastructure expansion. 

Lorenz Curve and Gini Coefficient: 

To quantify service distribution equity, a Lorenz curve was constructed based on cumulative infrastructure access 

versus cumulative population share, stratified by housing typology. The Gini coefficient of 0.096, derived from 

typology-weighted infrastructure scores, reveals a very low degree of inequality. This suggests that basic services 

such as water, roads, and connectivity are extended fairly evenly across formal, informal, and transitional housing 

clusters.[11] 

The minimal deviation of the Lorenz curve from the 45° line of equality underscores a system where infrastructure 

provisioning is uniformly maintained, irrespective of typology class or spatial placement. This finding is notable 

given the presence of structurally diverse entities—ranging from luxury high-rise complexes to informal 

settlements and under-construction parcels. 

Interpretation and Implications: 

The combination of moderate SESI and low Gini coefficient indicates a spatially diverse but relatively equitable 

urban fabric. While morphologies differ in density and form, the current infrastructure provisioning model 

demonstrates inclusiveness in coverage. These fairness metrics can support downstream applications in: 

 Urban resilience modelling 

 Priority infrastructure investment 

 Spatial equity auditing for governance and development planning 

g.  Explainability and Observability Mechanisms 

 LLM-Based Semantic Reasoning: The system employs Google Gemini 2.5 Pro LLM for explainable classification 

of urban typologies. Responses are grounded in observable geospatial features such as rooftop geometry, road 
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connectivity, green space presence, and spatial configuration. Each semantic interpretation is output in 

structured JSON, enabling downstream analytics while maintaining human- understandable transparency 

 System Observability: To ensure reproducibility and operational robustness, the system logs detailed metrics 

for every LLM invocation: 

- Prompt Tokens: 859 

- Response Tokens: 798 

- Total Token Usage: 1657 

- Response Time: 33.28 seconds 

Explainable AI Components: Optional explainability mechanisms in the proposed framework include: 

• Prompt-guided structured reasoning to elicit interpretable, semantically rich outputs directly from the LLM. 

• Cross-Modal  Attribution  Consistency 

(CMAC) for validating whether the model's natural language explanations semantically reference core quantitative 

indicators such as rooftop area, infrastructure access, building density, and proximity to economic centres. 

These mechanisms are designed to ensure that the LLM's outputs are not only plausible but also grounded in 

feature-aware reasoning. The CMAC evaluation, in particular, helps assess the internal coherence of model 

responses with respect to established urban theories prioritizing spatial accessibility, infrastructural equity, and 

morphological patterns. 

A.  Evaluation Criteria 

To assess the effectiveness of LLM-guided socioeconomic inference from satellite-derived urban morphology, the 

study employed the following evaluation metrics: 

1. Socioeconomic Spread Index (SESI): 

The Socioeconomic Spread Index (SESI) is derived from the normalized Shannon entropy of inferred housing 

typology distributions, quantifying both class diversity and spatial heterogeneity across the study region [8]. The 

SESI score of 0.7413 indicates a moderate level of categorical diversity, reflecting a differentiated but somewhat 

unbalanced spatial distribution of housing classes. 

This entropy score suggests that while multiple typologies—ranging from high-income enclaves to informal and 

transitional settlements—are present, they are not uniformly distributed across the spatial landscape. The result 

underscores structural heterogeneity and validates the typology inference method’s ability to capture nuanced 

class variations within the built environment. This SESI value also provides evidence of emerging morphological 

gradients, shaped by both formal zoning regimes and market-led urban development patterns. 

2. Gini Coefficient for Infrastructure Access:  

The Gini coefficient, used to assess infrastructure distribution equity across typologies, was 

recalculated      using     typology-weighted infrastructure scores. The value of 0.096 denotes a very low level of 
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inequality, indicating that access to basic urban infrastructure is equitably distributed among all identified housing 

categories. 

This is further supported by the Lorenz curve, which closely follows the line of perfect equality. The near-

symmetrical curve illustrates that cumulative infrastructure provisioning rises proportionally with cumulative 

population share, even in the presence of socioeconomically diverse typologies. This finding highlights a uniform 

extension of urban services, regardless of housing formality, income bracket, or spatial positioning— 

underscoring the inclusivity of the urban service network within the study region. 

3. Explainability through Prompt Engineering and Cross-Modal Consistency: 

Model interpretability was facilitated through prompt engineering aimed at generating structured, feature-

grounded responses from the language model. To systematically assess the coherence between textual outputs 

and corresponding numerical attributes, a Cross- Modal Attribution Consistency (CMAC) framework was 

employed. 

The CMAC mechanism verifies whether key quantitative indicators—such as average rooftop area, infrastructure 

access, building density, and proximity to economic centers—are semantically represented in the model-

generated descriptions. For instance, textual phrases such as "temporary structures with limited services" are 

expected to align with low values across these features. 

This strategy supports explainability by ensuring internal consistency between modalities, thereby enhancing the 

transparency and interpretive reliability of the LLM-driven inference process. 

4. Radar Profile Normalization: 

To systematically assess and compare the structural attributes of identified housing typologies, a radar chart-

based normalization was employed along three standardized and policy- relevant axes: 

• Infrastructure Quality, 

• Proximity to Economic and Administrative Centres, and 

• Population Density. 

Each typology’s profile was evaluated using min- max normalization to project values on a [0,1] scale, thereby 

enabling direct visual comparison across heterogeneous urban forms. As observed in the updated radar chart (Fig. 

1), formal housing categories—such as upper-middle-income and high- income zones—demonstrated symmetric, 

high- magnitude profiles across all three axes. These patterns are indicative of integrated infrastructure, 

favourable centrality, and optimized density. 

In contrast, informal settlements and under- construction areas exhibited asymmetric and compressed radar 

signatures, characterized by low normalized values in infrastructure and centrality, despite moderate-to-high 

density. These structural deficiencies visually encode patterns of spatial exclusion and developmental imbalance. 

This radar-based typology analysis serves not only as a diagnostic visualization tool but also facilitates cross-

category benchmarking, enabling decision- makers to identify and prioritize underserved zones in urban planning 

agendas. 
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In summary, the multidimensional evaluation framework—encompassing entropy-based SESI, inequality metrics 

via Gini and Lorenz analysis, cross-modal attribution consistency checks, and multi-criteria radar normalization—

constitutes a rigorous approach to validating urban housing inference. Each metric was meticulously chosen to 

reflect core aspects of spatial justice, infrastructural equity, and interpretability, ensuring the methodological 

soundness and academic integrity of the presented analysis. 

B. Comparative Results 

Typolog y Sh are (%) Acc ess 

Level 

Den sity (/km 

²) 

Proxi mity (km) SESI 

Contri bution 

High Income/ Formal Commercial 47 Hig h (3) High (215) ~1.1 High 

Upper- Middle-Income Housing 35 Hig h (3) Low (~90) ~0.8 Modera te 

Middle-Income Housing 11 Goo d (2) High (183) ~1.9 Modera te 

Low-Income / Informal Settlements 5 Vari es (0) Very Low (20) ~2.3 Minima l 

Under Construction / Vacant Land 2 Lim ited (1) Med ium (115) ~2.6 Minima l 

Dominance & Diversity: 

The computed Socioeconomic Spread Index (SESI) of 0.7413 reflects a moderate level of 

typological         heterogeneity,                         suggesting            a stratified yet non-uniform distribution of urban 

housing classes. This value captures both the presence of multiple residential and non-residential typologies and 

the spatial asymmetry with which they are distributed. The dominant housing typology—Upper- Middle-

Income            Housing                 (47%)—is characterized by spatially contiguous, well- planned multi-storey 

apartment clusters typically found in gated communities with robust infrastructure. This is followed by 

High-Income and Formal Commercial structures (35%), which include IT parks, luxury high-rises, and centrally 

located mixed-use zones, reflecting both economic and locational advantages. 

In contrast, Middle-Income Housing constitutes 11% of the urban footprint and includes moderately dense, 

standalone buildings or cooperative housing units with intermediate levels of infrastructure. Under- Construction 

or Vacant Parcels account for 5%, often concentrated in fringe areas or along expansion corridors, reflecting 

speculative land use and developmental transition. Finally, Low-Income or Informal Settlements make up just 2% 

of the area, indicating a limited spatial footprint of informality within the assessed urban boundary. 

This typology imbalance contributes to a SESI value that signals diversity, yet not equity. The overrepresentation 

of formal, high-income categories, alongside the underrepresentation of structurally vulnerable zones, reveals a 

tiered morphology that favors certain socioeconomic groups in terms of infrastructure access and spatial 

integration. These findings reinforce the need for equitable urban planning strategies that target under-served 

and transitional zones to reduce latent disparities in provisioning and inclusion. 

Density Patterns: 

Informal settlements and middle-income areas showed higher building densities, implying elevated spatial 

compression and service load potential. By contrast, commercial zones were sparse and peripheral, yet closer to 

economic centres, showing capital-concentrated locational advantage 
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Infrastructure Access Gradient: 

A clear positive gradient was identified— higher-income housing classes consistently mapped to higher 

infrastructure scores (3), while informal zones were restricted to limited scores (1), reinforcing spatial 

stratification hypotheses. 

MultivariateVisualization Insights: Scatter plots and radar charts illuminated interaction patterns across key 

spatial attributes. The observed correlations between proximity, density, and infrastructure further validated the 

learned classification schema, showing that the LLM-guided model had effectively  internalized  real-world  urban 

morphology signals. 

III. DISCUSSION AND POLICY IMPLICATIONS 

The integration of explainable artificial intelligence and multimodal data sources offers a new paradigm for urban 

socioeconomic diagnostics. In contrast to traditional models that prioritize classification accuracy alone, our 

approach emphasizes interpretability and spatial reasoning, facilitating actionable insights for urban stakeholders. 

 

Fig: 1 Rader Chart of Housing typologies 

 

Fig: 2. Lorenz curve 
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A.  Interpreting Structural Urban Profiles 

The classification and analysis of urban morphologies revealed clear and interpretable patterns across different 

housing typologies. Figure 5 illustrates a radar chart profiling five housing categories—High Income, Upper-

Middle Income, Middle Income, Low-Income/Informal Settlements, and Under Construction/Vacant Land—across 

three normalized parameters: infrastructure access, proximity to economic centres, and building density. Figure 

1. Radar chart comparing normalized values for infrastructure access, economic proximity, and construction 

density across five housing typologies. Balanced, high-magnitude signatures are observed in formal residential 

zones, whereas informal settlements and transitional zones display asymmetric, low-valued profiles, indicating 

infrastructural disadvantage. 

The chart shows that high-income and upper-middle- income neighbourhoods are characterized by well- balanced 

profiles with high infrastructure access and advantageous proximity. Conversely, low-income settlements, 

although densely built, suffer from limited access to services and are situated farther from economic hubs. These 

disparities highlight zones of infrastructural exclusion and provide an evidence-based rationale for prioritization 

in urban planning [9]. 

B.  Measuring Infrastructure Inequity 

To evaluate the equity of infrastructure distribution across urban housing typologies, a Lorenz curve was 

generated (Figure 2), depicting the cumulative share of infrastructure access relative to the cumulative population 

share. The curve remains closely aligned with the line of perfect equality, indicating a near- uniform distribution 

of infrastructure services across the population. 

The computed Gini coefficient of 0.096 quantitatively confirms this finding, signifying a very low level of inequality 

in service provisioning. Unlike previous estimates that suggested moderate asymmetry, the current results reflect 

an inclusive infrastructural landscape, wherein both formal and informal housing categories receive relatively 

proportionate access to urban amenities. 

Notably, even the lowest-income and transitional zones—which typically experience infrastructural neglect—

exhibit comparable levels of access to basic services, such as roads, sanitation, and electricity. This uniformity in 

provisioning challenges conventional assumptions of infrastructural marginalization at the urban periphery. 

Figure 2. Lorenz Curve of Infrastructure Access Distribution by Housing Typology. A low Gini coefficient (0.096) 

is observed, highlighting a near-equitable allocation of infrastructure across all housing categories. 

The alignment between the Lorenz analysis and radar-based typology profiles reinforces the conclusion that urban 

form and service access are no longer strictly hierarchical in the studied region. Instead, infrastructure 

investments appear to have penetrated across socioeconomic strata, supporting the notion of inclusive urban 

development. These findings contribute empirical support to emerging theories of post-hierarchical urban 

provisioning and underscore the importance of evidence-based infrastructure policy that sustains this equitable 

trend. 
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C.  Policy Applications and Governance Relevance  

This framework has the potential to serve as a decision-support tool for urban planners and policymakers [10]. 

The explainable outputs, coupled with interactive visualizations, make it accessible to non-technical stakeholders. 

Specific use cases include: 

• Infrastructure Allocation: Identifying service-deficient yet densely populated areas for immediate 

infrastructure upgrades. 

• Urban Growth Monitoring: Tracking construction in underdeveloped areas to inform zoning regulations and 

urban sprawl mitigation. 

• Proximity-Based Economic Planning: Guiding transport and employment hub placements near 

disadvantaged settlements. 

The model’s interpretability is especially valuable in participatory governance settings, where explainable AI can 

foster transparency and inclusive planning. 

D.  Ethical Considerations and Scalability 

While the model excels in structural interpretability and operational transparency, ethical concerns must be 

addressed. Stigmatization of communities based on inferred typologies must be avoided, and local validation 

mechanisms should be incorporated. Moreover, satellite data usage must comply with privacy and ethical data 

governance standards. 

The proposed architecture’s reliance on zero-shot prompting and schema-controlled output enables rapid 

generalization to different urban geographies. This makes it a scalable framework for national-level assessments, 

sustainable development audits, and infrastructure equity planning in both the Global South and North. 

IV.  FUTURE SCOPE 

While the proposed framework effectively bridges the gap between high-resolution satellite imagery and 

interpretable socioeconomic assessment, several promising avenues remain open for future research and 

enhancement: 

1. Temporal Analysis and Urban Dynamics Incorporating multi-temporal satellite data can enable tracking of 

urban growth patterns, infrastructure upgrades, and population shifts over time. This would facilitate the 

detection of emerging trends such as gentrification, informal sprawl, or disaster-induced transformations [4]. 

2. Integration with Real-time Data Streams The inclusion of IoT and ground-sensor data (e.g., traffic flows, air 

quality, utility usage) can provide a more holistic view of infrastructure performance and urban liability [8]. 

This multimodal fusion would improve the granularity and reliability of socioeconomic assessments. 

3. Model Generalization Across Geographies Extending the framework to diverse geographical regions, 

particularly in low- and middle-income countries, will test its adaptability and robustness. Fine-tuning LLM 

prompts and imagery schemas could address regional architectural styles, zoning laws, and climate-sensitive 

constructions. 

4. Community Participation and Human-in-the- Loop  Validation 
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5. Embedding participatory mechanisms— wherein community stakeholders validate and contextualize AI-

driven outputs—can significantly improve ethical deployment [10][11]. Crowdsourcing corrections or 

feedback can enhance typology labelling and mitigate potential biases. 

6. Policy Simulator   Integration The future development of an integrated policy simulation layer could allow 

decision- makers to test the potential impact of infrastructure investments or zoning changes based on model 

forecasts and spatial socioeconomic indices. 

V. CONCLUSION 

This study presented an innovative, explainable multimodal framework that leverages satellite imagery and large 

language models for infrastructure-driven socioeconomic assessments. Unlike traditional classification systems, 

this approach produces interpretable outputs that support transparent decision-making and equitable urban 

development. 

The results demonstrate that housing typologies vary significantly in terms of infrastructure access, spatial 

density, and proximity to economic hubs. Through visual tools such as radar charts and Lorenz curves, the study 

identified moderate inequality in infrastructure distribution, reinforcing the need for targeted planning 

interventions. 

Moreover, the framework's adaptability, zero-shot reasoning capabilities, and semantic clarity make it suitable for 

scalable deployment across cities and countries. 

Importantly,                          the                          integration                             of 

explainability     enhances     trust,     usability,     and accountability—making this a valuable tool for urban 

planners, policymakers, and development agencies. In sum, this work lays the foundation for a new 

generation               of                                   interpretable     urban  intelligence systems that align technical 

sophistication with human-centric policy design. 

APPENDIX A: 

The Python source code used in this study—including environment initialization, geospatial referencing via Google 

Earth URL, AI prompt initialization for geospatial socioeconomic analysis, exploratory data analysis of extracted 

multimodal attributes, semantic parsing of geospatially anchored JSON data, tabular representation of housing 

typologies, multivariate spatial analysis, and radar-based visualization of urban housing types—is publicly 

available on GitHub [12]. 
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