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Abstract— A self-starting A-stable implicit linear multistep block method for approximating stiff initial 

value problems (IVPs) in ordinary differential equations (ODEs) is developed. The construction was carried 

out by pairing a three-step top order method (TOM) and a four-step linear multistep method and shifting 

each equation four times to form a block method that generates approximations on ten grid points 

simultaneously. The implementation of the method on some stiff ODEs confirms its efficiency. 
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1.0 INTRODUCTION  

First order ordinary differential equations (ODEs) of the form  

𝑦′(𝑡) = 𝑓(𝑥, 𝑦(𝑡))

𝑦(𝑡0) = 𝑦0
}                                                                                 (1.1) 

represent important mathematical models of real-world phenomena. They are useful tools in the formation 

of epidemiological models [ 1, 2, 3], dynamic systems [4], chemical reactions, electrical circuits [5] etc. To 

this end, first order ordinary differential equations are applied in different fields such as physical sciences, 

health sciences, social sciences and engineering.  

Over the years, many researchers have concentrated on obtaining solutions to equation (1.1) because an 

𝑛𝑡ℎ order ordinary differential equation can be solved by reducing it to a system of first order ODEs which 

are easier to programme.  

some first order ODEs or systems are stiff. “Stiffness occurs in differential equations where two or more 

different time scales of the independent variables on which the dependent variables are changing” [6]. A 

stiff ODE can either be linear or nonlinear.  

In linear problems, stiffness is caused by eigenvalues of large negative values. The degree of stiffness is 

measured using the ratio 𝑆𝑅 =
𝑚𝑎𝑥|𝜆|

𝑚𝑖𝑛|𝜆|
, where 𝜆 denote an eigenvalue [6].  
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Although, there are many analytical and semi analytical methods of solving stiff ODEs, especially linear stiff 

ODEs, numerical methods remain valuable methods for dealing with nonlinear problems and for 

investigating and analyzing simple special cases [7]. In recent years, with the invention of software such as 

MAPLE, MATLAB and MATHEMATICA, many researchers have developed A-stable numerical methods for 

handling stiff ODEs.  

Block methods provide very high accurate methods that are absolute stable (A-stable) and circumvent 

Dalqhist barrier [8], they were introduced to improve stability of methods [9].  

Since most block methods are constructed using linear multistep methods, they also provide 𝑘 − 1 starting 

values and simultaneously generate 𝑘 approximations [8]. For more on the advantages of block methods, 

the following can be consulted [10, 11, 5, 12, 13]. 

The aim of this paper is to develop a 6th order implicit linear multistep method (LMM) and combine it with 

the top order method (TOM) of order 6 to form a pair which is used to construct a one-step implicit block 

method for approximating stiff ODEs.  

The rest of the paper is organized as follows, Section 2 deals with the formulation and analysis of the 

implicit block method, the implementation is carried out in Section 3, while the discussion and conclusion 

are provided in Section 4 and 5 

2.0 METHODS 

In this Section, we derive a symmetric linear multistep scheme of order (𝑘 + 2) = 6, which is combined 

with a top order method (TOM) of order 2𝑘 = 6, to form a block method that is self-starting. The pairs are 

shifted forward simultaneously four times to give a set of ten equations which are solved to obtain the 

values of the unknown,   𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+2, … , 𝑦𝑛+10.    

2.1 Derivation of a Symmetric Method of Order Six (6) 

We derive a symmetric scheme of order (𝑘 + 2) = 6, where 𝑘 = 4. To this end, consider the polynomial 

function represented by  𝑓(𝑥𝑛 , 𝑦(𝑥𝑛)). 

Let 

𝑓(𝑥𝑛 , 𝑦(𝑥𝑛)) =  𝑃𝑛(𝑥𝑛) = ∑(
𝑟

𝑘
)∆𝑘𝑦𝑛

𝑛

𝑘=0

                                                                     (2.1) 

where 

𝑥 =  𝑥𝑛 +  𝑟ℎ, 𝑑𝑥 = ℎ𝑑𝑟 

and  

𝑟 =
𝑥 − 𝑥𝑛
ℎ

,                                                                                                                                                (2.2) 

∆ denotes the forward operator defined by ∆𝑘𝑦𝑛 = ∆𝑘−1𝑦𝑛+1 − ∆
𝑘−1𝑦𝑛 .  
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Let the interpolating polynomial 𝑃𝑛(𝑥𝑛) be defined by, 

𝑃𝑛(𝑥𝑛) = 𝑓𝑛 + 𝑟∆𝑓𝑛 +
𝑟(𝑟 − 1)

2!
∆2𝑓𝑛 +

𝑟(𝑟 − 1)(𝑟 − 2)

3!
∆3𝑓𝑛 +                                               

                                      
𝑟(𝑟 − 1)(𝑟 − 2)(𝑟 − 3)

4!
∆4𝑓𝑛 +⋯+ 𝑓𝑛

𝑟(𝑟 − 1)… (𝑟 − 𝑛 + 1)

𝑛!
∆𝑛𝑓𝑛

} (2.3) 

Consider the general well-posed first order initial value problem (IVP), 

𝑑𝑦(𝑥𝑛)

𝑑𝑥
= 𝑓(𝑥𝑛, 𝑦(𝑥𝑛)),    𝑦(𝑥0) = 𝑦0.                                                                                  (2.4) 

The derivation of the symmetric scheme of order (𝑘 + 2), for 𝑘 = 4  is done in two stages, after which the 

final scheme is obtained by summing the results obtained from the two stages.  

STAGE 1 

Integrating equation (2.4) from 𝑥𝑛+3 to 𝑥𝑛+4 we have, 

∫ 𝑑𝑦(𝑥𝑛)
𝑥𝑛+4

𝑥𝑛+3

= ∫ 𝑓((𝑥𝑛 , 𝑦(𝑥𝑛))𝑑𝑥
𝑥𝑛+4

𝑥𝑛+3

                                                               (2.5)  

Using the first five terms of equation (2.3) and substituting in equation (2.5) and further simplification 

gives, 

𝑦(𝑥𝑛+4) − 𝑦(𝑥𝑛+3) =

∫ [𝑓𝑛 + 𝑟∆𝑓𝑛 +
𝑟(𝑟 − 1)

2!
∆2𝑓𝑛 +

𝑟(𝑟 − 1)(𝑟 − 2)

3!
∆3𝑓𝑛 +

𝑟(𝑟 − 1)(𝑟 − 2)(𝑟 − 3)

4!
∆4𝑓𝑛] ℎ

𝑥𝑛+4

𝑥𝑛+3

𝑑𝑟 

}
 

 

(2.6) 

or  

ℎ

𝑦(𝑥𝑛+4) − 𝑦(𝑥𝑛+3) =

[𝑟𝑓𝑛 +
𝑟2

2
∆𝑓𝑛 +

2𝑟3 − 3𝑟2

12
∆2𝑓𝑛 +

𝑟4 − 4𝑟3 + 4𝑟2

24
∆3𝑓𝑛 +

6𝑟5 − 45𝑟4 + 110𝑟3 − 90𝑟2

720
∆4𝑓𝑛]

4

3

} (2.7) 

Substituting the limits and simplifying the R.H.S. of equation (2.7) gives, 

ℎ {[4𝑓𝑛 + 8∆𝑓𝑛 +
20

3
∆2𝑓𝑛 +

8

3
∆3𝑓𝑛 +

14

45
∆4𝑓𝑛] − [3𝑓𝑛 +

9

2
∆𝑓𝑛 +

9

4
∆2𝑓𝑛 +

3

8
∆3𝑓𝑛 −

3

80
∆4𝑓𝑛]} 

∴ 𝒚𝒏+𝟒 − 𝒚𝒏+𝟑 = 𝒉 [−
𝟏𝟗

𝟕𝟐𝟎
𝒇𝒏 +

𝟓𝟑

𝟑𝟔𝟎
𝒇𝒏+𝟏 −

𝟏𝟏

𝟑𝟎
𝒇𝒏+𝟐 +

𝟑𝟐𝟑

𝟑𝟔𝟎
𝒇𝒏+𝟑 +

𝟐𝟓𝟏

𝟕𝟐𝟎
𝒇𝒏+𝟒]     (𝟐. 𝟖) 

STAGE 2 

Integrating equation (2.4) from 𝑥𝑛 to 𝑥𝑛+1 gives,  

∫ 𝑑𝑦(𝑥𝑛) = ∫ 𝑓(𝑥𝑛 , 𝑦(𝑥𝑛))𝑑𝑥.                                                                         (2.9)
𝑥𝑛+1

𝑥𝑛

𝑥𝑛+1

𝑥𝑛
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Using the first five terms of equation (2.3) and substituting in equation (2.9) and further simplification 

yields, 

𝑦(𝑥𝑛+1) − 𝑦(𝑥𝑛) = ∫ [𝑓𝑛 + 𝑟∆𝑓𝑛 +
𝑟(𝑟 − 1)

2!
∆2𝑓𝑛 +

𝑟(𝑟 − 1)(𝑟 − 2)(𝑟 − 3)

4!
∆4𝑓𝑛] ℎ𝑑𝑟

𝑥𝑛+1

𝑥𝑛

 

𝑦(𝑥𝑛+1) − 𝑦(𝑥𝑛) =

ℎ [𝑟𝑓𝑛 +
𝑟2

2
∆𝑓𝑛 +

2𝑟3 − 3𝑟2

12
∆2𝑓𝑛 +

𝑟4 − 4𝑟3 + 4𝑟2

24
∆3𝑓𝑛 +

6𝑟5 − 45𝑟4 + 110𝑟3 − 90𝑟2

720
∆4𝑓𝑛]

1

0

} (2.10) 

Substituting the limits and simplifying the R.H.S. of equation (2.12) gives, 

ℎ [𝑓𝑛 +
1

2
∆𝑓𝑛 −

1

12
∆2𝑓𝑛 +

1

24
∆3𝑓𝑛 −

19

720
∆4𝑓𝑛].                                                                  (2.11) 

Simplifying equation (2.11) gives, 

∴ 𝒚𝒏+𝟏 − 𝒚𝒏 = {
𝟐𝟓𝟏

𝟕𝟐𝟎
𝒇𝒏 +

𝟑𝟐𝟑

𝟑𝟔𝟎
𝒇𝒏+𝟏 −

𝟏𝟏

𝟑𝟎
𝒇𝒏+𝟐 +

𝟓𝟑

𝟑𝟔𝟎
𝒇𝒏+𝟑 −

𝟏𝟗

𝟕𝟐𝟎
𝒇𝒏+𝟒}.                    (𝟐. 𝟏𝟐) 

Adding equation (2.8) and equation (2.12) results to: 

𝒚𝒏+𝟒 − 𝒚𝒏+𝟑 + 𝒚𝒏+𝟏 − 𝒚𝒏 =
𝒉

𝟗𝟎
[𝟐𝟗𝒇𝒏 + 𝟗𝟒𝒇𝒏+𝟏 − 𝟔𝟔𝒇𝒏+𝟐 + 𝟗𝟒𝒇𝒏+𝟑 + 𝟐𝟗𝒇𝒏+𝟒]        (𝟐. 𝟏𝟑) 

Equation (2.13) is a symmetric scheme of order 𝑘 = 4. 

2.2 Six Order Top Order Method (TOM) 

Consider the numerical scheme, 

−
𝟏𝟏

𝟔𝟎
𝒚𝒏 −

𝟗

𝟐𝟎
𝒚𝒏+𝟏 +

𝟗

𝟏𝟎
𝒚𝒏+𝟐 +

𝟏𝟏

𝟔𝟎
𝒚𝒏+𝟑 = 𝒉 [

𝟏

𝟐𝟎
𝒇𝒏 +

𝟗

𝟐𝟎
𝒇𝒏+𝟏 +

𝟗

𝟐𝟎
𝒇𝒏+𝟐 +

𝟏

𝟐𝟎
𝒇𝒏+𝟑] (𝟐. 𝟏𝟒) 

Equation (2.14) is a 3-step TOM formula of order 6 which was considered by [12]. Analysis of the TOMs 

show that they are higher order accurate methods of order 𝑝 = 2𝑘 but are unstable methods. 

Equation (2.14) is combined with the derived symmetric method, equation (2.13) to develop a block 

method for the solution of first order stiff ordinary differential equations. 

2.3 Construction of the Block Method  

The block method is developed by replacing 𝑛 by 𝑛 + 3 in equation (2.14) and combining with equation 

(2.13) to form a pair which is shifted four times as presented in block formation. 
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𝐴0 =

(

 
 
 
 
 
 
 

0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 )

 
 
 
 
 
 
 

,𝐵0 =

(

 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0

29

90
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 )

 
 
 
 
 
 
 
 

  

 

𝐴1 =

(

 
 
 
 
 
 
 
 
 
 
 
 

1 0 −1 1 0 0 0 0 0 0

0 0
−11

60

−9

20

9

20

11

60
0 0 0 0

−1 1 0 −1 1 0 0 0 0 0

0 0 0
−11

60

−9

20

9

20

11

60
0 0 0

0 −1 1 0 −1 1 0 0 0 0

0 0 0 0
−11

60

−9

20

9

20

11

60
0 0

0 0 −1 1 0 −1 1 0 0 0

0 0 0 0 0
−11

60

−9

20

9

20

11

60
0

0 0 0 −1 1 0 −1 1 0 0

0 0 0 0 0 0
−11

60

−9

20

9

20

11

60)

 
 
 
 
 
 
 
 
 
 
 
 

 

𝐵1 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

94

90
−
66

90

94

90

29

90
0 0 0 0 0 0

0 0
1

20

9

20

9

20

1

20
0 0 0 0

29

90

94

90
−
66

90

94

90

29

90
0 0 0 0 0

0 0 0
1

20

9

20

9

20

1

20
0 0 0

0
29

90

94

90
−
66

90

94

90

29

90
0 0 0 0

0 0 0 0
1

20

9

20

9

20

1

20
0 0

0 0
29

90

94

90
−
66

90

94

90

29

90
0 0 0

0 0 0 0 0
1

20

9

20

9

20

1

20
0

0 0 0
29

90

94

90
−
66

90

94

90

29

90
0 0

0 0 0 0 0 0
1

20

9

20

9

20

1

20)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.4.1 The Order and Consistency of the Block Method 

Order of the Block Method 

http://www.mijrd.com/
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The order of the block method is carried out following the method of block formation and is confirmed to 

be of order 

  𝑝 = (6, 6, 6, 6, 6, 6, 6, 6, 6, 6)𝑇 

with error constant 

𝑝𝑛+1 = (
271

60480
−

37

3780
−

331

20160
−
29

945
−

317

12096
−

37

1260
−

43

1728
−
37

945

2549

20160
−
12079

91476
)
𝑇

 

 

2.4.2 Convergence Analysis 

Consider the general convergence analysis which is given by the matrix formation of the block method are 

given as  

𝐴1𝑌⍵+1 + 𝐴0𝑌⍵ = ℎ𝐵0𝐹⍵ + ℎ𝐵1𝐹⍵+1 where 𝐴1, 𝐴0, 𝐵0 and 𝐵1 are 𝑀 ×𝑀 matrices  

Multiplying through by 𝐴1
−1 gives  

𝐴1
−1𝐴1𝑦𝑛+1 + 𝐴1

−1𝐴0𝑦𝑛 = ℎ𝐴1
−1𝐵0𝑓𝑛 + ℎ𝐴1

−1𝐵1𝑓𝑛+1 

or 

𝐼𝑦𝑛+1 + 𝐶𝑦𝑛 = ℎ𝐷𝑓𝑛 + ℎ𝐸𝑓𝑛+1                                                                                                        (2.15)  

where 𝐼 = 𝐴1
−1𝐴1, 𝐶 = 𝐴1

−1𝐴0, 𝐷 = 𝐴1
−1𝐵0 and 𝐸 = 𝐴1

−1𝐵1. 

Using the test function 𝑦΄ = 𝜆𝑦 and substituting 𝜆𝑦𝑛 for 𝑓𝑛 and 𝜆𝑦𝑛+1 for 𝑦𝑛+1 leads to 

𝐼𝑦𝑛+1 + 𝐶𝑦𝑛 − 𝜆ℎ𝐸𝑦𝑛+1 − 𝜆ℎ𝐷𝑦𝑛 = 0                                                                                           (2.16) 

where                                    

 𝑦𝑛 = 𝑓(𝑥𝑛 , 𝑦𝑛), and  

𝑦𝑛+1 = 𝑓(𝑥𝑛+1, 𝑦𝑛+1). 

Substitute 𝑍 = 𝜆ℎ in equation (2.16) 

𝐼𝑦𝑛+1 + 𝐶𝑦𝑛 − 𝑍𝐸𝑦𝑛+1 − 𝑍𝐷𝑦𝑛 = 0                                                                                               (2.17)   

The characteristic equation associated with (2178) is given by 

(1 − 𝑍𝐸)𝑟 = (𝑍𝐷 − 𝐶) 

or 

𝑟 = (1 − 𝑍𝐸)−1(𝑍𝐷 − 𝐶) 

Let 𝑟 =A 

det(𝐼𝑟 − 𝐴) = 0                                                                                  

where  𝐴 = (1 − 𝑍𝐸)−1(𝑍𝐷 − 𝐶) 

𝜌(𝑟) = 𝑑𝑒𝑡[𝐼𝑟 − (1 − 𝑍𝐸)−1(𝑍𝐷 − 𝐶)]                                                                                                               (2.18)  
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Evaluating equation (2.18) gives 

𝑟9 (𝑟 −
𝐴𝑍10 + 𝐵𝑍9 + 𝐶𝑍8 + 𝐷𝑍7 + 𝐸𝑍6 + 𝐹𝑍5 + 𝐺𝑍4 +𝐻𝑍3 + 𝐼𝑍2 + 𝐽𝑍 + 𝑈

𝐾𝑍10 − 𝐿𝑍9 +𝑀𝑍8 − 𝑁𝑍7 + 𝑂𝑍6 − 𝑃𝑍5 + 𝑄𝑍4 − 𝑅𝑍3 + 𝑆𝑍2 − 𝑇𝑍 + 𝑈
) = 0 (2.19) 

where  

𝐴 = 749376414 𝐵 = 9072748368 𝐶 = 45891413805
𝐷 = 134757262436 𝐸 = 281213734995 𝐹 = 462030153990
𝐺 = 582582615840 𝐻 = 549874580040 𝐼 = 367959931200
𝐽 = 516274272000 𝐾 = 820643724 𝐿 = 9909576702
𝑀 = 50621609595 𝑁 = 154860388014 0 = 336857647095
𝑃 = 545142202410 𝑄 = 667471375440 𝑅 = 608551131960
𝑆 = 392979211200 𝑇 = 161278128000 𝑈 = 31755240000

 

Recall that  𝑍 = 𝜆ℎ, and as ℎ → 0, equation (2.19) reduces to 

𝑟9 (𝑟 −
𝑈

𝑈
) = 0 

or 

 𝑟9(𝑟 − 1) = 0 

∴ 𝑟1 = 𝑟2 = 𝑟3 = 𝑟4 = 𝑟5 = 𝑟6 = 𝑟7 = 𝑟8 = 𝑟9 = 0and  𝑟10 = 1 

Since no root has modulus greater than one and |𝑧| = 1 is simple, the developed block method is zero stable 

and the block is convergence. 

2.4.3 Region of Absolute Stability  

Equation (2.30) was plotted in MATLAB and the following region confirms that the one-step implicit block 

method is A-stable since the region of stability is the exterior of the circle 

 

Figure 1: Region of Absolute Stability of the Constructed Block Method 
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3.0 RESULTS 

In this Section, the block method developed is tested on some first order stiff ordinary differential 

equations. The numerical results, analytical results and absolute errors are displayed in Tables. 

Example 1  

Consider the stiff ordinary differential equations 

𝑦′ = −10𝑦, 𝑦(0) = 1,   

Table 1: Numerical/Analytic Results for Example 1 

N 𝒙𝒏 𝒚𝒏 𝒚(𝒙𝒏) |𝒚𝒏 − 𝒚(𝒙𝒏)| Error in [8] 

0 0 1.0000000000 1.0000000000 − − 

1 0.01 0.9048374180 0.9048374180 − − 

2 0.02 0.8187307522 0.8187307531 9.0000 × 10−10 7.93 × 10−9 

3 0.03 0.7408182195 0.7408182207 1.2000 × 10−9  

4 0.04 0.6703200443 0.6703200460 1.7000 × 10−9 7.36 × 10−9 

5 0.05 0.6065306583 0.6065306597 1.4000 × 10−9  

6 0.06 0.5488116347 0.5488116361 1.4000 × 10−9 6.83 × 10−9 

7 0.07 0.4965853027 0.4965853038 1.1000 × 10−9  

8 0.08 0.4493289624 0.4493289641 1.7000 × 10−9 7.03 × 10−9 

9 0.09   0.4065696604 0.4065696597 7.0000 × 10−10  

10 0.10 0.3678794347 0.3678794412 6.5000 × 10−9 2.12 × 10−8 

 

Example 2 

Consider the system of two stiff equations   

𝑦′ = −20𝑦 − 19𝑧, 𝑦(0) = 2,   and  

𝑧′ = −19𝑦 − 20𝑧, 𝑧(0) = 0, 

Table 2: Numerical/Analytic Results for Example 2 

n 𝒙𝒏 𝒚𝒏 𝒚(𝒙𝒏) |𝒚𝒏 − 𝒚(𝒙𝒏)| 𝒛𝒏 𝒛(𝒙𝒏) |𝒛𝒏 − 𝒛(𝒙𝒏)| 

0 0 2.0000000000 2.0000000000 − 0 0 − 

1 0.01 1.667103289 1.667106708 3.4190

× 10−6 

−0.3129963788 −0.3129929592 3.4196

× 10−6 

2 0.02 1.438598501 1.438604685 6.1840

× 10−6 

−0.5217988451 −0.5217926620 6.1831

× 10−6 

3 0.03 1.280806104 1.280812475 6.3710

× 10−6 

−0.6600849632 −0.6600785922 6.3710

× 10−6 

4 0.04 1.170919276 1.170925510 6.2340

× 10−6 

−0.7506596019 −0.7506533680 6.2339

× 10−6 
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Example 3 

Consider the system of three stiff equations, where 𝑡 denotes an independent variable while 𝑥, 𝑦 and  𝑧 

represent dependent variables 

𝑥′ = −20𝑥 − 0.25𝑦 − 19.75𝑧, 𝑥(0) = 1, 

𝑦′ =    20𝑥 − 20.25𝑦 + 0.25𝑧, 𝑦(0) = 0, and 

𝑧′ =    20𝑥 − 19.75𝑦 − 0.25𝑧, 𝑧(0) = −1, 

Table 3: Numerical/Analytic Results for Example 3 

 

Table 4: Absolute Errors for Example 3 

5 0.05 1.093499889 1.093503496 3.6070

× 10−6 

−0.8089589602 −0.8089553529 3.6073

× 10−6 

6 0.06 1.038089291 1.038092172 2.8810

× 10−6 

−0.8454397756 −0.8454368954 2.8802

× 10−6 

7 0.07 0.9976117888 0.9976131096 1.3208

× 10−6 

−0.8671758508 −0.8671745302 1.3206

× 10−6 

8 0.08 0.9672705820 0.9672735148 2.9328

× 10−6 

−0.8789621102 −0.8789591780 2.9322

× 10−6 

9 0.09   0.9438328986 0.9438280997 4.7989

× 10−6 

−0.8840294720 −0.8840342709 4.7989

× 10−6 

10 0.10 0.9250594058 0.9250793294 1.9924

× 10−5 

−0.8846154292 −0.8845955066 1.9923

× 10−5 

n 𝒕𝒏 𝒙𝒏 𝒙(𝒕𝒏) 𝒚𝒏 𝒚(𝒕𝒏) 𝒛𝒏 𝒛(𝒕𝒏) 

0 0 1.0000000000 1.0000000000 0 0 −1.0000000000 −1.0000000000 

1 0.01 0.9800395009 0.9800399088 0.1776293511 0.1776292614 −0.8173831281 −0.8173832178 

2 0.02 0.9342444613 0.9342452012 0.3168391390 0.3168395534 −0.6732106947 −0.6732102802 

3 0.03 0.8739732570 0.8739740441 0.4210195506 0.4210202550 −0.5640923891 −0.5640916846 

4 0.04 0.8077883452 0.8077890232 0.4947374236 0.4947385192 −0.4854612499 −0.4854601540 

5 0.05 0.7418176353 0.7418179491 0.5430509762 0.5430518386 −0.4322589359 −0.4322580734 

6 0.06 0.6801550359 0.6801551848 0.5710142936 0.5710151266 −0.3994312400 −0.3994304070 

7 0.07 0.6252639250 0.6252638546 0.5833499086 0.5833504732 −0.3822555078 −0.3822549432 

8 0.08 0.5783522634 0.5783522936 0.5842467243 0.5842475754 −0.3765427150 −0.3765418638 

9 0.09   0.5397093301 0.5397085794 0.5772654202 0.5772648331 −0.3787320615 −0.3787326487 

10 0.10 0.5089832982 0.5089850496 0.5653008826 0.5653043996 −0.3859285425 −0.3859250248 

n 𝒕𝒏 |𝒙𝒏 − 𝒙(𝒕𝒏)| |𝒚𝒏 − 𝒚(𝒕𝒏)| |𝒛𝒏 − 𝒛(𝒕𝒏)| 

0 0 − − − 

1 0.01 4.0790 × 10−7 8.9700 × 10−8 8.9700 × 10−8 

2 0.02 7.3990 × 10−7 4.1440 × 10−7 4.1450 × 10−7 
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4.0 DISCUSSION  

A 4th-step linear multistep method (LMM) was developed as presented in equation (2.13). The method is 

symmetric, implicit and zero stable but certainly not A-stable. The solution of its first characteristic 

polynomial in MAPLE reveal that the method has two roots of modulus 1. This shows that the method is 

weakly stable. On the other hand, equation (2.14) is one of top order methods (TOMs) which were 

considered as unstable but highly accurate methods. Ordinarily, combining a TOM and a weakly stable LMM 

cannot produce a method which is capable of approximating stiff ODEs. However, [ 8 and 12] combined the 

TOMs with other LMMs to form block methods which have been successfully implemented on stiff ODEs 

To this end, A pair was formed with equation (2.13), which is a LMM of order 6 and equation (2.14) which 

is a 6th order TOM and used to construct a one-step implicit block method. Analysis was performed on the 

block method and it was verified to be A-stable 

 A-stable, self-stating and capable of generating 10 approximations simultaneously. Three examples on a 

single, a system of two and a system of three stiff ODEs were used to test the efficiency of the block method. 

The numerical results showed good approximations of the analytical solutions and also compared 

favourably with other numerical methods.  

5.0 CONCLUSION  

An implicit block method that is self-starting was developed by combining a 4th-step LMM and a 3-step 

TOM. The block method is A-stable. Numerical experiments confirmed that the method provides good 

approximation of stiff ODEs    
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